
If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

1

Don Mills

If Chained Implications in Properties
Weren’t So Hard, They’d be Easy

Don MIlls
Microchip Technology Inc.

Chandler, AZ, USA

don.mills@microchip.com

mills@lcdm-eng.com

www.microchip.com

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

2

Don Mills
Introductions:

Who is Don Mills anyway

� Over 20 Years in the Industry
� Over 30 ASICS/Designs
� Consultant/Trainer for 10 years with

— Sutherland HDL
— Sunburst Design

� Experience with the “big” three simulators
� Member of the IEEE 1800 SystemVerilog BC and

EC committees
� Member of the IEEE 1801 UPF committee
� Presented numerous papers at various conference

— Go to www.lcdm-eng.com to access papers

� Co-author of “Verilog and SystemVerilog Gotchas”

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

3

Don Mills

Mentor and SV Stuff

� Questa Advanced Support for SV
— SystemVerilog for Design
— Verification – the best in the industry (in my opinion)
� Constrained Random / OOP based test environment
� Verification Environments

— Coverage
� Reports, tables, charts
� UCDB – driving the standard

— Assertions
� ATV – Assertion Thread Viewer

One of MENTORS Best Kept Secret!!!

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

4

Don Mills

Assumptions

� You know basically what assertions are
� You know basically what properties are
� You know basically what sequences are
� You know what range repetition is

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

5

Don Mills
What is an Implication?

Quick review

� Implication operators – in property expressions only

� Provide a conditional test for a sequence
— If the condition is true, the sequence is evaluated
— If the condition is false, the sequence is not evaluated

� |-> overlapped implication: sequence evaluation
starts immediately

� |=> non-overlapped implication: sequence
evaluation starts at the next clock

property bus_req_prop6 ;
@(posedge clk) req |-> ##[1:5] grant ;

endproperty:bus_req_prop6

If req is false , I don’t
care about grant

Only test for grant
if req tests true

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

6

Don Mills

Implication Terminology

� Antecedent – the condition or expression before the
implication operator

� Consequent – the expression following the
implication operator

� Vacuous success – Name for the don’t-care
condition when the antecedent is false

property example_5;
@(posedge clk) antecedent_sequence_expression |->

consequent_property_expression ;
endproperty:example_5

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

7

Don Mills

Why use chained implications?

� Chained implications
— Allow for multi-level (or hierarchical) conditioning
� Like nested if-then

— Can share local variables between the different levels

Pseudo code example:
if chip_en then

if bank_en then
if mem_en then

verify mem

Don’t care about mem
unless all conditions
are true

property p_chain;
@(posedge clk) chip_en |-> bank_en |-> mem_en |-> mem;

endproperty:p_chain;

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

8

Don Mills

The Spec and the Code

� Monitor number of cycles between a start and an
end point

— Verify the number of cycles between the start and the end
points is less than the max allowed

`define TRUE 1

property p_max_cycles;
int v_cnt ;
@(posedge clk) ($rose(start), v_cnt = 0) |->

(`TRUE, v_cnt++)[*0:$] ##1 done |->
(v_cnt <= MAX);

endproperty:p_max_cycles

ap_max_cycles: assert property (p_max_cycles);

If only this property worked …

`define TRUE 1

property p_max_cycles;
int v_cnt ;
@(posedge clk) ($rose(start), v_cnt = 0) |->

(`TRUE, v_cnt++)[*0:$] ##1 done |->
(v_cnt <= MAX);

endproperty:p_max_cycles

ap_max_cycles: assert property (p_max_cycles);

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

9

Don Mills

$rose(a) |-> b[*0:$] ##1 c |-> d;

a2 c2

A1 C1

Simpler Version of the Code

� With a chained implication
— What is the antecedent?
— What is the consequent?

property p_chain;
@(posedge clk) $rose(a) |-> b[*0:$] ##1 c |-> d;

endproperty:p_chain;

ap_chain: assert property (p_chain);

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

10

Don Mills

The Results, failure condition

property p_chain;
@(posedge clk) $rose(a) |-> b[*0:$] ##1 c |-> d;

endproperty:p_chain;

ap_chain: assert property (p_chain);

Fails at cycle 4

a

0 1 42 3 5 6 7 8 9 10

b

c

d

p_chain

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

11

Don Mills

Pass attempt 1

property p_chain;
@(posedge clk) $rose(a) |-> b[*0:$] ##1 c |-> d;

endproperty:p_chain;

ap_chain: assert property (p_chain);

a

0 1 42 3 5 6 7 8 9 10

b

c

d

p_chain

Does not end with

a pass at cycle 4 -

BUMMER

Pass or Fail at

cycle 4?

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

12

Don Mills

Pass attempt 2

property p_chain;
@(posedge clk) $rose(a) |-> b[*0:$] ##1 c |-> d;

endproperty:p_chain;

ap_chain: assert property (p_chain);

Does not end

with a pass at

cycle 4

or

cycle 7

a

0 1 42 3 5 6 7 8 9 10

b

c

d

p_chain

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

13

Don Mills

Another look…

property p_chain;
@(posedge clk) $rose(a) |-> b[*0:$] ##1 c |-> d;

endproperty:p_chain;

ap_chain: assert property (p_chain);

Why doesn’t this
assertion end
here with a pass
when both c and d
are high?

Why does this
assertion end with
a pass here?

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

14

Don Mills

Assertion Thread Viewer (ATV)

Assertion statement is
listed at the top of the

window

Only one Assertion
thread is listed at a
time (slide 28)

Pass/Fail for tested
signals is noted for
each time step

Self taught – documentation is
outstanding for this tool

ATV must be enabled for a given
assertion and a specific thread

of that assertion prior

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

15

Don MillsConcurrent Assertions
Use Special Event Scheduling
� Concurrent assertions use special event scheduling queues:

— Prevents race conditions with events in the design modules
Next

Time Slot

Previous
Time Slot

ActivePreponed Preponed

Postponed

simulation time

Inactive

NBA

Observed

Reactive

Re-Inactive

Re-NBA

property expressions
sampled

property expressions
sampled

evaluate if property
expression passed or failed

evaluate if property
expression passed or failed

pass/fail statements
executed

pass/fail statements
executed

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

16

Don Mills

Why Use the ATV

� Concurrent Assertions are sampled at the beginning
of a time step

— If data is changing during the time step
� Must look at the data prior to the time step
� Like a D-FF – must look at the value of D prior the clk

edge
— ATV doesn’t show the value, it shows the pass/fail for

each time step

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

17

Don Mills

@(posedge clk) $rose(a) |-> b[*0:$] ##1 c |-> d;

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

18

Don Mills

So what’s going on????

� In order to sort this out, let’s look at

— sequences and properties containing ranges

� Start with a single level implication with a
— Range in consequent
— Range in antecedent

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

19

Don Mills

Sequence vs. Property

sequence bus_req ;
req ##[1:5] grant ;

endsequence:bus_req

property bus_req_prop4 ;
@(posedge clk) bus_req ;

endproperty:bus_req_prop4

example_4: assert property (bus_req_prop4);

req ##[1:5] grant;
// equivalent to:
// req ##1 grant or
// req ##2 grant or
// req ##3 grant or
// req ##4 grant or
// req ##5 grant

NOTE: Only looking
at the thread starting
at cycle 1.

Ignoring other
pass/fail cycles.

Sequence – multiple end points
Property – implied first match

req

0 1 42 3 5 6 7 8 9 10

grant

bus_req

bus_req_prop4

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

20

Don Mills
Range in Consequent – maintains the first

match rule

property bus_req_prop6 ;
@(posedge clk) req |-> ##[1:5] grant ;

endproperty:bus_req_prop6

example_6: assert property (bus_req_prop6);

req

0 1 42 3 5 6 7 8 9 10

grant

bus_req_prop6

First matching pass condition in the
consequent ends the expression

First match is implied
in the consequent

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

21

Don Mills

What about a range in the antecedent?

sequence bus_req ;
req ##[1:5] grant ;

endsequence:bus_req

property bus_req_prop7 ;
@(posedge clk) bus_req |-> ##[1:5] done ;

endproperty:bus_req_prop7

example_7: assert property (bus_req_prop7);

req

grant

done

0 1 42 3 5 6 7 8 9 10 11 12

bus_req

bus_req_prop7

This assertion fails at the
end of the expression

NO implied first match
in the antecedent –
why, why, why?

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

22

Don Mills

Range in antecedent again
sequence bus_req ;

req ##[1:5] grant ;
endsequence:bus_req

property bus_req_prop7 ;
@(posedge clk) bus_req |-> ##[1:5] done ;

endproperty:bus_req_prop7

example_7: assert property (bus_req_prop7);

req

grant

done

0 1 42 3 5 6 7 8 9 10 11 12

bus_req

bus_req_prop7

This assertion passes
when the second done
occurred

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

23

Don Mills
The Problem is…
The Solution is…

� For antecedents with ranges
� Every passing condition

And
� Every possible future passing condition

must have a passing consequent for the
property expression to PASS

� In other words – no “first match” is applied to the antecedent
� No “first match” is applied to the whole implication expression

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

24

Don Mills
Range in the antecedent again…
Why does this fail...

sequence bus_req ;
req ##[1:5] grant ;

endsequence:bus_req

property bus_req_prop7 ;
@(posedge clk) bus_req |-> ##[1:5] done ;

endproperty:bus_req_prop7

example_7: assert property (bus_req_prop7);

req

grant

done

bus_req

bus_req_prop7

0 1 42 3 5 6 7 8 9 10 11 12

This assertion fails at the
end of the expression

WHY:
the passing antecedent
conditions at cycles 5 & 6
do not have a passing
consequent

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

25

Don Mills
The FIX

Use first match on antecedent

sequence bus_req ;
req ##[1:5] grant ;

endsequence:bus_req

property bus_req_prop8 ;
@(posedge clk) first_match (bus_req) |-> ##[1:5] done ;

endproperty:bus_req_prop8

example_8: assert property (bus_req_prop8);

req

grant

done

first_match(bus_req)

bus_req_prop8

0 1 42 3 5 6 7 8 9 10 11 12

Add first match in the antecedent
– only the first passing condition
from the sequence is used.

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

26

Don Mills

Infinite upper bound range in antecedent

property p_chain1;
@(posedge clk) $rose(a) |-> b[*0:$] ##1 c |-> d;

endproperty:p_chain1;

property p_chain2;
@(posedge clk) $rose(a) |-> first_match(b[*0:$] ##1 c) |-> d;

endproperty:p_chain2;

Remember - no implied first
match in the antecedent

a

0 1 42 3 5 6 7 8 9 10

b

c

d

p_chain1

p_chain2
(first_match)

p_chain1 does not end at cycle 4
it continues waiting/looking for
future c/d “pass” conditions
(as long as b is true)

p_chain2 ends at cycle 4 because a first
match was used in the antecedent

p_chain1 could be used for error checking
– response when failure occurs

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

27

Don Millsproperty p_chain1;
@(posedge clk) $rose(a) |-> b[*0:$] ##1 c |-> d;

endproperty:p_chain1;

property p_chain2;
@(posedge clk) $rose(a) |-> first_match(b[*0:$] ##1 c) |-> d;

endproperty:p_chain2;

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

28

Don Mills

Firstmatch Graphics

property p_chain2;
@(posedge clk) $rose(a) |-> first_match(b[*0:$] ##1 c) |-> d;

endproperty:p_chain2;

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

29

Don Mills

$rose(a) |-> b[*0:$] ##1 c |-> d;

a2 c2

A1 C1

What about vacuous results?

A1 fails = vacuous success
A1 passes , a2 fails = vacuous success

Both A1 and a2 must pass for a non-vacuous
success to be possible

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

30

Don Mills

$rose(a) |-> b[*0:$] ##1 c |-> d;

a2 c2

A1 C1

How do I model a vacuous success from

A1 only?

property prop_19a ;
@(posedge clk) A1 |-> a2 |-> c2 ;

endproperty:prop_19a

property prop_19b;
@(posedge clk) A1 |-> a2 ;

endproperty:prop_19b

property prop_19c;
@(posedge clk) prop_19a and prop_19b ;

endproperty:prop_19c

Vacuous for A1 only
requires and'ing two
properties together

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

31

Don Mills
What if the upper bound was fixed and not

infinity?

property prop_16a;
int v_cnt;
@(posedge clk) $rose(a) |-> b[*0:8] ##1 c |-> d;

endproperty:prop_16a

property prop_16b;
int v_cnt;
@(posedge clk) $rose(a) |-> first_match (b[*0:8] ##1 c) |-> d;

endproperty:prop_16b

a

0 1 42 3 5 6 7 8 9 10

b

c

d

prop_16a

prop_16b

A fixed upper bound
can end with a pass
once the upper bound
is reached

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

32

Don Mills

Fixed upper bound

A pass at cycle 7 does
not cause the
assertion to end.

The assertion ends at
cycle 8 if there is pass
at or before cycle 8

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

33

Don Mills

module foo; int upper = 8;
property prop_17b;

int v_cnt ;
@(posedge clk) ($rose(a) && (upper > 0), v_cnt = 0) |->

first_match (((v_cnt < upper), v_cnt++)[*0:$] ##1 c) |-> d;
endproperty:prop_17b
property prop_17c;

int v_cnt ;
@(posedge clk) ($rose(a) && (upper > 0), v_cnt = 0) |->

((v_cnt < upper), v_cnt++)[*0:$] ##1 c |-> d;
endproperty:prop_17c

Variable upper range limit

a

0 1 42 3 5 6 7 8 9 10

b

c

d

prop_17b

prop_17c

Test c/d until the upper count
has been reached. Can still
use first match if desired.

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

34

Don Mills
Variation – only test when the variable

upper limit is reached

module foo;
bit a, c, d, clk;
int upper;

property prop_18(cnt);
int v_cnt;
@(posedge clk) ($rose(a) && (cnt > 0), v_cnt = 0) |->

((v_cnt < cnt), v_cnt++)[*0:$] ##1
(v_cnt == cnt) ##0 c |-> d;

endproperty:prop_18

ap18: assert property (prop_18(upper));

initial begin
upper = 8;

Only test c/d when (v_cnt == cnt)

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

35

Don Mills
Another way to model chained implication

is using fusion (##0)
property prop_13a;

int v_cnt;
@(posedge clk) $rose(a) ##0 (b[*0:$] ##1 c) |-> d;

endproperty:prop_13a

property prop_13b;
int v_cnt;
@(posedge clk) $rose(a) ##0 first_match (b[*0:$] ##1 c) |-> d;

endproperty:prop_13b

a

0 1 42 3 5 6 7 8 9 10

b

c

d

prop_13a

prop_13b

Replacing the first
implication operator
with a fusion gives
identical results

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

36

Don Mills

Implication vs. Fusion – same results

Implication

Fusion

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

37

Don Mills

Summary

� An implication will not end until all possible antecedent
“passes” have tested with a passing consequent

� An implication with a range in the antecedent ends when
— A passing antecedent has a failing consequent
— The end of the range occurs
— first_match is used on the antecedent and the consequent passes.

`define TRUE 1

property p_max_cycles;
int v_cnt;
@(posedge clk) ($rose(start), v_cnt = 0) |->

first_match ((`TRUE, v_cnt++)[*0:$] ##1 done) |->
(v_cnt <= MAX);

endproperty:p_max_cycles

ap_max_cycles: assert property (p_max_cycles);

Verify that the number of cycles
between the start and the end point
is less than the max allowed

Range – can be either a repetition range or timing range

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

38

Don Mills

Questions & Answers…

�QUESTIONS and
GUESSES

If Chained Implications in Properties Weren’t So Hard, They’d be Easy, Oct 2009

39

Don Mills

Initials, Presentation Title, May 2009

39

