|f Chained Implicationsin Properties
Weren't So Hard, They'd be Easy

Don Mills

Microchip Technology Inc.

Chandler, AZ, USA

don.mills@microchip.com
mills@lcdm-eng.com

Www.microchip.com

USERZUSER




Introductions: Dogms
Who is Don Mills anyway e

= Over 20 Years in the Industry
= Over 30 ASICS/Designs

= Consultant/Trainer for 10 years with
— Sutherland HDL
— Sunburst Design

= Experience with the “big” three simulators

= Member of the IEEE 1800 SystemVerilog BC and
EC committees

= Member of the IEEE 1801 UPF committee

= Presented numerous papers at various conference
— Go to www.lcdm-eng.com to access papers

= Co-author of “Verilog and SystemVerilog Gotchas <

o ... = USERZ2USERUY




Don Mills

Mentor and SV Stuff AN

MICROCHIP

= Questa Advanced Support for SV

— SystemVerilog for Design

— Verification — the best in the industry (in my opinion)
= Constrained Random / OOP based test environment
= Verification Environments

— Coverage
= Reports, tables, charts
= UCDB - driving the standard

— Assertions
= ATV — Assertion Thread Viewer

One of MENTORS Best Kept Secret!!!

— | B S ER 2 U SER Y

ed Implications in Proe lies Weren't SQ_Iial:d;-'Fhey’a be Easy, ©O




Don Mills

Assumptions N

MICROCHIP

You know basically what assertions are

= You know basically what properties are

= You know basically what sequences are
= You know what range repetition is

200%

USERZUSER

If Chained Implications in Properties Weren’t SQ_FLa:d;-They’-ci-be Easy, ©



Don Mills

What is an Implication? o
QUiCk review MICROCHIP

= |[mplication operators — in property expressions only

= Provide a conditional test for a sequence
— If the condition is true, the sequence is evaluated
— If the condition is false, the sequence is not evaluated

= |-> overlapped implication: sequence evaluation
starts iImmediately

= |=> non-overlapped implication: sequence
evaluation starts at the next clock [ifreq is faise, I don't

care about grant

property  bus_req_prop6 ;
@ (posedge clk) req |-> ##[1:5] grant ; Only test for grant
endproperty:bus_req_prop6 if req tests true
S ERZ2ILISER 2

If Chained Implications in Pro ties Weren't SQ_FLa:d;-ThéY’-ci-be Easy, O



Don Mills

Implication Terminology N

MICROCHIP

= Antecedent — the condition or expression before the
Implication operator

= Consequent — the expression following the
Implication operator

= \/acuous success — Name for the don’t-care
condition when the antecedent Is false

property example 5;
@(posedge clk) antecedent_sequence_expression |->
consequent_property_expression

endproperty.example 5

USERZUSER

If Chained Implications in Properties Weren’t SQ_FLa:d;-They’-ci-be Easy, ©



Don Mills

Why use chained implications? e\

MICROCHIP

= Chained implications
— Allow for multi-level (or hierarchical) conditioning

= |ike nested if-then

Pseudo code example:

If | chip_en then Don't care about mem
if bank en then unless all conditions
if  mem_en then are ftrue

verify ~ mem

property p_chain;
@ (posedge clk) chip_en |-> bank en |-> mem_en |-> mem

endproperty:p_chain;

— Can share local variables between the different levels

200%

: - = USERZUSER

If Chained Implications in Prope_r ies Weren'’t So Hard; They'd be Easy, ©




The Spec and the Code

Don Mills

e\

MICROCHIP

= Monitor number of cycles between a start and an

end point

— Verify the number of cycles between the start and the end

points is less than the max allowed

“define TRUE 1
property p_max_cycles;

int v _cnt ;

(v_cnt <= MAX);
endproperty:p_max_cycles

ap_max_cycles: assert property (p_max_cycles);

@(posedge clk) ($rose(start), v.cnt =0)|->
CTRUE, v _cnt++ )[*0:$] ##1 done |->

If only this property worked ..

—— =

If Chained Implications in Properties Weren't So Hard, They'd be Easy, © s/ 7

USERZUSER




Don Mills

Simpler Version of the Code e\

MICROCHIP

property p_chain;
@ (posedge clk) $rose(a) |-> b[*0:$] ##1 c -> d;
endproperty:p_chain;

ap_chain: assert property (p_chain);

= With a chained implication
— What is the antecedent?
— What is the consequent?

$rose(a) |->  b[*O:$] ##1lc |->  d;

N J
\ ) Y 8
\_ a2 c2 i
~

Al C1

If Chained Implications in Pr_o:b;e'Fties Weren't So Hard; They'd be Easy, O




Don Mills

The Results, failure condition S\

MICROCHIP
property p_chain;
@ (posedge clk) $rose(a) |-> b[*0:$] ##1 c |-> d;
endproperty:p_chain;
ap_chain: assert proper% chain); /
0 1 /{ 3 5 6 /7 8 10
a |l [| | /
//

b || /

C [T 1 //

d [ ]
p_chain | ] ONS Fails at cycle 4

200%

= Y. = USERZUSER

If Chained Implications in EFSp"eFties Weren't So Hard; They'd be Easy, O



Don Mills

Pass attempt 1 N

MICROCHIP

property p_chain;
@ (posedge clk) $rose(a) |-> b[*0:$] ##1 c

endproperty:p_chain;
ap_chain: assert proper% chain); /
/ / / / Pass or Fail at
0o 1 £ 3 6 / cycle 4?
a |l [| 1 /

S A
b || / v
c [ |
d T Does not end with
p_chain | [ a pass at cycle 4 -
i BUMMER

USERZUSER




Don Mills

Pass attempt 2 N

MICROCHIP
property p_chain;
@(posedge clk) $rose(a) |[-> b[*0:$] ##1 c |-> d;
endproperty:p_chain;
ap_chain: assert property/(p_chain); /
0o 1 3 5 6 / 87 9 0
a T 1 ~ // ; v
/

o1 S avars D9es not end

) —+= T with a pass at

d mE N cycle 4
p_chain g or
B 0 cycle 7

= == > = USERZUSER

If Chained Implications in Praﬁ-'e;Fties Weren't So Hard; They'd be Easy, O




Don Mills

Another look... QN

MICROCHIP
property p_chain;
@ (posedge clk) $rose(a) |->  b[*0:$] ##lc
endproperty:p_chain;
ap_chain: assert property (p chaln)
|_3_ _B "'_é'_% E,'_" E"?é“@"’ﬁinﬁ@)Z{ 100 ]1]?]&3; BPEBEUUL| ¥
\££LJE1£JHE%4% ' e Ty
M
[EP S —————— |y (l0cSN't this
e i e I e, O i ; s 000 i ) e O O [ O aSSEI’tIOH end
SRSRSRSRERERS here with a pass

when both ¢ and d
are high?

1]

Why does this
m assertion end with
| a pass here?

Cursor 1 |
12|

[D ns to 293 ns Mow: 265 ns  Delta: 0 |

"--.'.3’! 'USERZUSER

If Chained Implications in Properties™




Don Mills

Assertion Thread Viewer (ATV) M

MIicrROCHIP
Assertion statement is Pass/Fail for tested Only one Assertion
listed at the top of the signals is noted for thread is listed at a
window each time step time (slide 28)
Eile Edit Wiew Add Window // \ \
EELTIETTES ¢

A assernt( @(posedge clk) (Fro (01 A1) Ch-=ef)

B Self taught — documentation is
outstandlng for this tooI L

ATV must be enabled for a given
assertion and a specific thread
of that assertion prlor

1drd; Tl Y u UC Edb,y"' OCt=

14
If Chained Implications in Properties




Concurrent Assertions Dogns
Use Special Event Scheduling

MICROCHIP

= Concurrent assertions use special event scheduling queues:
— Prevents race conditions with events in the design modules

S simulation time  ----------------=m-mmmmee- . ) Negﬁ t
I ( h I ime Slo
. [ Preponed —> Active [ | [ prmm— ]
Previous i ) —'—P:
Time Slot - k |nactlve ]_’
property expressions
sampled
NBA
evaluate if property -
expression passed or failed | Observed
pass/fail statements L Reactive <
executed ) -
| Re-Inactive |
Re-NBA | > .
» Postponed |— e

— = LUSERZUSER
If Chained Implications in Proper ies Weren't So Hard; They’d be Easy, Oct'2 . 7.2




Don Mills

Why Use the ATV e\

MICROCHIP

= Concurrent Assertions are sampled at the beginning
of a time step
— If data is changing during the time step
= Must look at the data prior to the time step

= Like a D-FF — must look at the value of D prior the clk
edge
— ATV doesn’t show the value, it shows the pass/fail for
each time step

16 . B S ER 2 USER %

If Chained Implications in Properties"Werent So Hard; They'd be Easy, ©




Don Mills

Format Too

@ (posedge clk) $rose(a) b[*0:$] ##1

S —

| | I : !
L AT L L L L L L T e
F

Delta: 0

Eile Edit

Qahyas,lg ArAAThrarararirarirerieici iR !
Lmitestij@iposedue oy - §

= frose(a)




Don Mills

So what's going on???? \

MICROCHIP

= In order to sort this out, let’s look at
—sequences and properties containing ranges

= Start with a single level implication with a
— Range in consequent
— Range in antecedent

USERZUSER

If Chained Implications in PFcSp'ei‘ties Weren't So Hard; They’d be Easy, O




Don Mills

Sequence vs. Property W

MICROCHIP

sequence bus req ;
req ##[1.5] grant;
/[ equivalent to:

Il req ##1 grant or
Il req ##2 grant or
Il req ##3 grant or
Il req ##4 grant or
Il req ##5 grant

2 4 5 6 7 8 9 10
re NOTE: Only looking
\ at the thread starting

q grant | | at cycle 1.
bus_req O ® © O Ignoring other
( ass/fail cycles.
~bus_req_prop4 | [} P d

Sequence — multiple end points

Property — |mplleq; Hfrmath _FeETe

If Chained Implications in Pro ties Weren't SQ_Iial:d;-'Fh'ey;d be Easy, Oct 2




Don Mills

Range in Consequent — maintains the first o
match rule MICROCHIP

property  bus_req_prop6
@(posedge clk) req |-> ##[1:5] grant ;

endproperty:bus_req_prop6

example_6: assert property/( bus_req_pfop6 );
0 1 / 2 3 4 5 / 7 8 9 10

req I 1 )

'4

grant | |

bus_req_prop6 [1—®

First matching pass condition in the First match is implied
consequent ends the expression In the consequent

= == > = USERZUSER

If Chained Implications in Praﬁ-'e;Fties Weren't So Hard; They'd be Easy, O




Don Mills

What about a range in the antecedent? W

MICROCHIP

sequence bus req ;
req ##[1:5] ant ;
endsequence:bus re

property  bus_req_pro ;

@(posedge clk)  bus_req |-> ##[1:5] done; NO implied first match
endproperty:bus_req_prop7 in the antecedent —
why, why, why?
ple_7: assert property ( bus _req_pfop7 );

012345/789101112
req | I |

grant | / | This assertion fail_s at the
end of the expression
done 1 ] /
bus_req O ®© ®© @ © /
bus_req_prop7 E‘] O

21

If Chained Implications in Properties Weren't So Hard, They'd be Easy, Oct2009 =




Range in antecedent again

— sequence bus req ;
req ##[1:5] ant ;
endsequence:bus re

property  bus_req_pro ;

@ (posedge clk) bus req |-> ##[1.5] done;
endproperty:bus_req_prop7
ple_7: assert property ( bus_req_pfop7 | );

Don Mills

MICROCHIP

This assertion passes
when the second done

0 1 2 3 4 5 / 7 8 \9 10 11 12
req ] ’
t | // | \
gran
|
\ done 1 ] [ ]
bus_req O © © © O
bus_req_prop7 E‘] ? ocourred




Don Mills

The Problem is... o
The Solution is. .. MICROCHIP

= For antecedents with ranges
= Every passing condition

And
= Every possible future passing condition

must have a passing conseqguent for the
property expression to PASS

= |n other words — no “first match” is applied to the antecedent
= No “first match” is applied to the whole implication expression

23 - s = USERZUSER

If Chained Implications in EFSp"eFties Weren't So Hard; They'd be Easy, O




Range in the antecedent again...
Why does this fail...

req ##[1:5]

sequence bus req ;

grant ;

endsequence:bus_req

property  bus_req_prop7
@ (posedge clk)

bus_req

endproperty:bus_req_prop7

example 7: assert property (

|-> ##[1:5

bus_req_prop7 );

Don Mills

MICROCHIP

This assertion fails at the
end of the expression

]

\

done;

HY:

the passing antecedent
cqnditions at cycles 5 & 6
dd not have a passing

(00) Sequent
| e
0 1 2 4 5 6 7 8 9 10 1 12
req || | yd
v
grant | | ,/ \
done [ 1 1 ,/ \
—
bus_req ol XX YC o> \
~———— \\\ﬂ
bus_req_prop7 E‘] O

24

If Chained Implications in Prope_r ies Weren'’t So Hard; They’d be Easy, Oct2




Th FlX Don I\/!ills
: o

Use first match on antecedent MICROCHIP

sequence bus req ;
req ##[1:5] grant ;
endsequence:bus_req

property  bus_req_prop8 ;
@ (posedge clk) first_ match ~ (bus_req ) |-> ##[1:5] done;
endproperty:bus_req_prop8

example 8: assert property ( bus _req_prop8 );
0 1 2 3 4 5 6 7 8 9 10 11 12
req [

grant |

done [ ] 1
first_match(bus_req) ) Q@ © Add first match in the antecedent

_ ~ — only the first passing condition
bus_req_prop8 E‘_t | from the sequence is used.

= —— = USERZUSER

If Chained Implications in Prop_e-Fties Weren't So Hard; They’d be Easy, Oct 20(




Don Mills

Infinite upper bound range in antecedent g

MICROCHIP

property p_chainil;
@ (posedge clk) $rose(da) |->  b[*O:$]##lc |->  d;
endproperty:p_chainl;

property p_chain2;
@(posedge clk) $rose(a) |-> first_match( b[*0:$] ##1 c ) |- d;
endproperty:p_chain2;

0 1 5 3 4 5 6 7 8 9 10 Remember - no implied first
match in the antecedent
a [ 1
o L] | p_chain1 could be used for error checking
c T | — response when failure occurs
uture c¢/d "pass” conditions
d ! (as long as b is true)
p_chainl ]
p_chain2 ?
(first_match) p_chain2 ends at cycle 4 because a first

match was used in the antecedent

200%

USERZUSER




property p_chaini; Don Mills

@(posedge clk) $rose(a) |->  b[*0:$] ##1l c > d; .
endproperty:p_chaini;

. MICROCHIP
property p_chain2;
@ (posedge clk) d;
S e endpropertyp chain2; -
I K= o ol e Al IS e | o]

-———-—-—-MM—_—_.e e

[ ‘0 ns to 247 ns

1233 ns Delta: 0



Firstmatch Graphics

Don Mills

MICROCHIP

property p_chain2;
@(posedge clk)  $rose(a)  |->
endproperty:p_chain2;

first_match( b[*0:$] ##1 c ) |-

| INACTIVE

Mowe | 235 ns |

——— File Edit XNiew Add Mindow
0nsto ~

| mm e s ®a @




Don Mills

What about vacuous results? N
MICROCHIP
$rose(a) |->  b[*O:$] ##1l c |->  d;
L —— Y
\_ a2 c2 i
e
Al C1

Al fails = vacuous success
Al passes , a2 fails = vacuous success

Both Al and a2 must pass for a non-vacuous
success to be possible

200%

USERZUSER




Don Mills

How do | model a vacuous success from o

Al Onl)’? MICROCHIP
$rose(a) |->  b[*O:$] ##1l c |->  d;
\ J
—
\_ a2 c2 Y
Y
Al C1l

property  prop_19a ;
@(posedge clk) \ Al|->a2 [|->c2;
endproperty:prop_19a

property  prop_ 19b;
@ (posedge clk)
endproperty:prop_19b

Vacuous for Al only
requires and'ing two
properties together

property prop_19c;
@ (posedge clk) prop_19a and prop 19D ;
endproperty:prop_19c

= = ' USERZ2USER

If Chained Implications in Prop_e-Fties Weren't So Hard; They'd be Easy, O



What if the upper bound was fixed and notmg”s
inﬁnit)’? MICROCHIP

property prop_16a,;

int v_cnt;

@(posedge clk) $rose(a) |-> b[*0:8] ##1 c |->d;
endproperty:prop_16a

property prop_16b;

int v_cnt;
@(posedge clk) $rose(a) |-> first_match  ( b[XQ:8] ##1 c) |-> d;
endproperty:prop_16b /
0 1 2 3 4 5 / 7 8 9 %\
a [ 1
/ \
b [
C 1] A fixed upper bound
_ can end with a pass
d I__|/ /// once the upper bound
prop_lGa B J . |S reaChed
prop_16b E ,

31

If Chained Implications in Prop_e-Fties Weren't So Hard; They'd be Easy, O




Don Mills
MICROCHIP

Fixed upper bound

Eile- Edit Miew odd Windosw \
The assertion ends at Tl
. . |
cycle 8 if there is pass

mErs|aqay
at or before cycle 8

-=((h[*1:8] ##1]C)]-=d)

[ @iposedye clk) (froze(;

A pass at cycle 7 does
| not cause the

B itestis) @i piosedge clk)

P grose 2]

1 S ER 2Uus T =-Z

If Chained Implications in Properties*Wei



Don Mills

Variable upper range limit N

MICROCHIP
— module foo; int upper = 8;
property prop_17b;
int v cnt ;
@ (posedge clk) ($rose(a) && (upper > 0), vent=0 )|->
first match  ((( v_cnt<upper ), v_cnt++ )[*0:$] ##1 c) |-> d;
endproperty:prop_17b
property prop_17c;
int v cnt ;
@ (posedge clk) ($rase(a) && (upper > 0), vent=0 )|->
(( v.cnt<upper ), v_cnt++ )[*0:$] ##1 c |-> d;
endproperty:prop_17c \
012\34}\678910
a |l I] 1 q Test c/d until the upper count
o | \ A has been reached. Can still
\ . e
\ use first match if desired.
C \ [ 1 1 A\
d \I__I \
\ N
prop_17b ] @ \
prop_17c ,

USERZUSER




Don Mills

Variation — only test when the variable o
upper limit is reached MICROCHIP

module foo;
bit a, c, d, clk;
int upper,;

property prop_18( cnt );
int v_cnt;
@(posedge clk) ($rose(a) && (cnt > 0), vent=0 )J->
(( vcnt<cnt ), v _cnt++)[*0:$] ##1
(vcent==cnt )##0c|->d;
endproperty:prop_

apl8: assert property (propx18( upper ));

initial begin
upper =8§;

AN

Only test ¢/d when ( v_cnt == cnt )

200%

If Chained Implications in Prope_r ies Weren'’t So Hard; They'd be Easy, ©

3 _— > USERZUSER




Don Mills

e\

Another way to model chained implication

IS USING fusion (##O) MICROCHIP
[ property prop_132; ]
int v_cnt;
@(posedge clk) $rose(a) ##0 (b[*0:$] ##1 c¢) |-> d;

endproperty:prop_13a

property prop_13b;

int v_cnt;

@(posedge clk) $rose(a) ##0 first_ match  (b[*0:$] ##1 c) |-> d;
endproperty:prop_13b

0 1 2 3 4 5 6 7 8 9 10

a [T 1

b ]

c ] Rep!acing the first

implication operator

d ] with a fusion gives
orop_ 13a — identical results
prop_13b ,

200%

If Chained Implications in Prope_r ies Weren'’t So Hard; They'd be Easy, ©

35 _— > USERZUSER




Don Mills

Implication vs. Fusion — same results &

MICROCHIP

Eile Edit Miew Add MWindow

|mur=|aqeas| =

Eile Edit Miew Add Window

| muers||aaas [od]

If Chained Implications in Prope




Don Mills

Summary AN

MICROCHIP

= An implication will not end until all possible antecedent
“passes”’ have tested with a passing consequent
= An implication with a range in the antecedent ends when
— A passing antecedent has a failing consequent
— The end of the range occurs
— first_match is used on the antecedent and the consequent passes.

‘de| Range — can be either a repetition range or timing range -
pelwecell Ule sidail allu tuie il [JOIﬂt

property p_max_cycles; is less than the max allowed
int v_cnt;
@(posedge clk) ($rose(start), v_cnt = 0) |->
first_match ( CTRUE, v_cnt++)[*0:$] ##1 done ) |->

(v_cnt <= MAX);
endproperty:p_max_cycles

ap_max_cycles: assert property (p_max_cycles);

E— : | .“A{'I',-‘, LI E E R z _LI E E R

If Chained Implications in Properties Werel .EE_SQ_IiaJ:d;-'Fh'eV’_d_ be Easy, O




Questions & Answers. .. AN

IIIIIIII

:QUESTIONS and
GUESSES

, y S ERZUUSERY,




USERZUSER




